Bounds on the minimum distance of additive quantum codes

Bounds on [[94,84]]2

lower bound:3
upper bound:3

Construction

Construction of a [[94,84,3]] quantum code:
[1]:  [[99, 89, 3]] quantum code over GF(2^2)
     quasicyclic code of length 99 with 8 generating polynomials
[2]:  [[94, 84, 3]] quantum code over GF(2^2)
     Shortening of [1] at { 9, 55, 78, 86, 90 }

    stabilizer matrix:

      [1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 0 1|0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0]
      [0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1|1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0]
      [0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0|0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0]
      [0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1|1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0]
      [0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 0 1 1 0|1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0]
      [0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 0 0|1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1]
      [0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1|0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0]
      [0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1|0 0 1 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1]
      [0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1|1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0]
      [0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 0|0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0]

last modified: 2006-04-03

Notes


This page is maintained by Markus Grassl (codes@codetables.de). Last change: 23.10.2014